نوشته‌ها

داده-کاوی-در-بازاریابی-نوین

داده کاوی چیست؟

داده کاوی یک فن‌آوری امیدبخش و نسبتا جدید است. داده کاوی به عنوان فرآیندی برای کشف دانش ارزشمند پنهان از طریق تجزیه و تحلیل مقادیر زیاد داده‌ها تعریف می‌شود، که در پایگاه‌های داده یا انبار داده، با استفاده از تکنیک‌های داده کاوی مختلف مانند یادگیری ماشین، هوش مصنوعی (AI)و اماری مورد استفاده قرار می‌گیرد. بسیاری از سازمان‌ها در صنایع مختلف از مزایای استخراج داده از قبیل تولید، بازاریابی، شیمیایی، هوافضا و غیره استفاده می‌کنند تا بهره‌وری کسب‌وکار خود را افزایش دهند. بنابراین، نیاز به فرآیند استخراج داده استاندارد به طور چشمگیری افزایش یافت. یک فرآیند داده کاوی باید قابل‌اطمینان باشد و باید توسط افراد تجاری با دانش کم و یا بدون دانش پیش‌زمینه معدن‌کاری داده‌ها تکرار شود. در نتیجه، در سال ۱۹۹۰، یک فرآیند استاندارد برای استخراج داده (crisp – DM)اولین بار پس از عبور از چندین کارگاه علمی و مشارکت بیش از ۳۰۰ سازمان منتشر شد.

درک کسب‌وکار

اول، لازم است اهداف تجاری را به روشنی درک کرده و نیازها و نیازهای کسب‌وکار را مشخص کنید.

سپس، ما باید وضعیت فعلی را با یافتن منابع، فرضیات، محدودیت‌ها و عوامل مهم دیگر ارزیابی کنیم که باید در نظر گرفته شوند.

سپس، از اهداف تجاری و شرایط فعلی، ما باید اهداف داده کاوی را برای رسیدن به اهداف کسب‌وکار در موقعیت فعلی ایجاد کنیم. در نهایت، یک برنامه داده کاوی خوب باید برای رسیدن به اهداف تجاری و هم داده کاوی ایجاد شود. برنامه باید تا آنجا که ممکن است دقیق باشد.

درک داده‌ها

اول، مرحله درک داده‌ها با مجموعه داده‌های اولیه شروع می‌شود، که ما از منابع داده‌های موجود جمع‌آوری می‌کنیم تا به ما کمک کند با داده‌ها آشنا شویم. برخی فعالیت‌های مهم باید شامل بار داده و یکپارچه‌سازی داده‌ها باشد تا جمع‌آوری داده‌ها با موفقیت انجام شود.

سپس، ویژگی‌های “ناخالص” یا “سطح” داده‌های بدست‌آمده باید به دقت مورد بررسی قرار گیرد و گزارش شود.

سپس، داده‌ها باید با پرداختن به سوالات استخراج داده مورد بررسی قرار گیرند، که می توان آن‌ها را با استفاده از پرس و جو، گزارش دهی و تجسم سازی مورد بررسی قرار داد. در نهایت، کیفیت داده‌ها باید با پاسخ دادن به برخی سوالات مهم مانند ” آیا داده‌های بدست‌آمده کامل هستند؟ آیا هیچ مقدار از داده‌های بدست‌آمده موجود در داده‌های بدست‌آمده وجود ندارد؟ ”

آماده‌سازی داده

آماده‌سازی داده‌ها معمولا حدود ۹۰ % زمان پروژه را مصرف می‌کند. نتیجه فاز آماده‌سازی داده‌ها، مجموعه داده نهایی است. هنگامی که منابع داده موجود شناسایی شدند، باید انتخاب، تمیز، ساخته و فرمت شده در فرم مورد نظر انتخاب شوند. عملیات اکتشاف داده‌ها در یک عمق بزرگ‌تر ممکن است در طول این مرحله انجام شود تا به الگوها براساس درک کسب‌وکار توجه شود.

مدلسازی

اول، تکنیک‌های مدل‌سازی باید برای استفاده برای مجموعه داده آماده انتخاب شوند.

سپس، سناریوی تست باید برای اعتبار سنجی کیفیت و اعتبار مدل تولید شود.

سپس یک یا چند مدل با اجرای ابزار مدل‌سازی بر روی مجموعه داده آماده ایجاد می‌شوند. در نهایت، مدل‌ها باید با دقت مورد ارزیابی قرار گیرند تا مطمین شوند که مدل‌های ایجاد شده، ابتکارات کسب‌وکار را برآورده می‌کنند.

ارزیابی

در مرحله ارزیابی، نتایج مدل باید در مرحله اهداف کسب‌وکار در مرحله اول ارزیابی شوند. در این مرحله، الزامات کسب‌وکار جدید ممکن است به دلیل الگوهای جدیدی که در نتایج مدل یا از عوامل دیگر کشف شده‌اند، افزایش یابد. کسب درک کسب‌وکار یک فرآیند تکرارشونده در داده کاوی است. تصمیم نهایی یا نرفتن باید در این مرحله برای حرکت به مرحله آماده‌سازی اتخاذ شود.

استقرار

دانش یا اطلاعات، که ما از طریق فرآیند داده کاوی به دست می‌آوریم، باید به گونه‌ای ارائه شود که سهامداران بتوانند آن را زمانی که می‌خواهند از آن استفاده کنند. براساس الزامات کسب‌وکار، مرحله آماده‌سازی می‌تواند به سادگی ایجاد یک گزارش یا پیچیدگی به عنوان فرآیند استخراج داده تکراری در سراسر سازمان باشد. در مرحله آماده‌سازی، برنامه‌های استقرار، نگهداری و نظارت باید برای اجرا و نیز پشتیبانی آینده ایجاد شوند. از نقطه‌نظر پروژه، گزارش نهایی پروژه باید تجربیات پروژه را خلاصه کرده و پروژه را بازبینی کند تا ببیند نیاز به بهبود درس‌های آموخته‌شده را دارد. CRISP-DM یک چارچوب یکپارچه برای مستندسازی و دستورالعمل‌های تجربه ارائه می‌دهد. علاوه بر این، DM ها می‌توانند در صنایع مختلف با انواع مختلف داده اعمال شود.

داده کاوی

داده کاوی و خدمات تحلیل داده جزو علومی است که امروز بسیار در سطح جامعه توسعه و پیشرفت یافته است و همین عامل نیز سبب افزایش میزان رشد و پیشرفت کسب و کارهای مختلف و صنعتی در سطح کشورمان شده است

اما داده کاوی چیست؟در پاسخ باید بگوییم که وقتی متخصص داده کاوی به یک کسب و کار مراجعه کرده و قصد ارائه خدمات داده کاوی به شرکت مورد نظر را دارند اولین سوالی که خواهند پرسید بدون شک این است که دیتاها و داده های اطلاعات فروش شما را برای ادامه کار نیازداریم و این موضوع خود برای معرفی علم داده کاوی کافی است تا بتوانیم به ابعاد این علم پی ببریم


مقاله  { داده کاوی چیست } را حتما مطالعه کنید


در واقع متخصصین داده کاوی با دریافت دیتاها و اطلاعات مورد نیاز از شما و کاوش این اطلاعات مناسبترین راه در رسیدن شما به اهداف کسب و کاری تان را پیشنهاد خواهند داد

خدمات شرکت های داده کاوی

تا این قسمت مقاله مسلما دید خوبی نسبت به داده کاوی یا تحلیل داده در ذهن شما شکل گرفته است اما به طور خلاصه بهتر است بگوییم که هر اطلاعاتی در هر کسب و کای می تواند نقش بسیار مهمی را در آن کسب و کار ایفا کند

حا این صنعت می تواند صنعت پزشکی باشد یا صنعت بازاریابی یا …

برای این که مبحث را طولانی تر نکنیم در زیر لینک مقالات مرتبطی را برای شما عزیزان گردآوری کرده ایم که به شرح زیر است :


نقش داده کاوی در صنعت

داده کاوی در پزشکی

داده کاوی در بورس


شناسایی شرکت متخصص داده کاوی

اما واقعا چگونه می توان شرکت های متخصص در حوزه داده کاوی و تحلیل داده را به خوبی شناسایی کرد؟

در حالت اول و ساده ترین نکته می توان به بازخوردهای افرادی که از ارتباط با این شرکتها گرفته اند توجه کرد و آن را مورد بررسی قرارداد اما اینکار نیز به سادگی نیست زیرا پیدا کردن اینطور افراد کار سختی می تواند باشد اما چند راهکارساده می توان اجرا کرد. به عنوان مثال می توان به نظراتی که کاربران وب  سایت یا شبکه های این شرکت منتشر می کنند دقت کرد و نسبت رضایت مشتریان از این شرکت را بدست آورد

داده کاوی در بازاریابی

داده کاوی در بازاریابی

همچنین در صورتی که این شرکت دارای گروه های اجتماعی نیز باشد می توان با حضور در این گروه ها چه به صورت حضوری و چه به صورت آنلاین صحبت های افراد در مورد این شرکت و همینطور نحوه پاسخگویی آنها به مراجعین را مورد بررسی قرارداد

این دو عامل مواردی هستند که می توانند به شما در پیدا کردن شرکت مناسب در این حوزه کمک شایانی بکنند.

مشاهده نمونه فعالیت های انجام شده و همچنین میزان اثر بخشی این فعالیت ها نیز یکی از عواملی هست که به شما در شناسایی کمک بسیار زیادی کرده و نقش مهمی در بدست آوردن وجه تمایز بین شرکت ها و کسب و کارها را ایفا می کند بنابراین در مراجعه به یک شرکت برای واسپاری فعالیت ها و مشاوره فعال، حتما به فاکتورهای مورد نظر دقت کرده و آنها را مورد بررسی قراردهید

شرکت تحلیل داده و داده کاوی همت در شهر مشهد

شهرمشهد دومین کلان شهر کشور است که به واسطه کسب و کارها و استارتاپ های گوناگون مستقر در این استان و شهر مذهبی از درصد رشد خوبی برخوردار بوده و اهمیت بالایی در توسعه مشاغل ایران دارد و به همین علت بسیاری از کسب و کارها میل به رشد و توسعه مشاغل خود در این شهر را دارند

شرکت داده کاوی همت با کادر متخصص خود در حوزه داده کاوی و نرم افزار آماده ارائه و انجام خدمات ویژه کسب و کارشما در اقصی نقاط کشور خصوصا شهرمشهد می باشد

با ما همراه باشید

داده کاوی

در این مقاله قصد داریم شما را با کلیات داده کاوی و همه مفاهیم آن و همچنین کاربرد های آن بیشتر آشنا کنیم

پس اگر از علاقمندان به علم داده کاوی هستید با ما همراه باشید تا با این علم به روز آشنا شوید

داده‌کاوی (به انگلیسی : Data Mining)، به مفهوم استخراج اطلاعات نهان یا الگوها و روابط مشخص در حجم زیادی از داده‌ها در یک یا چند بانک اطلاعاتی بزرگ گفته می‌شود. بسیاری از مردم داده کاوی را مترادف واژه‌های رایج کشف دانش در پایگاه‌داده‌ها (به انگلیسی: knowledge discovery in databases) (اختصاری KDD) می‌دانند. داده‌کاوی، پایگاه‌ها و مجموعه حجیم داده‌ها را در پی کشف و استخراج، مورد تحلیل قرار می‌دهد. این‌گونه مطالعات و کاوش‌ها را به واقع می‌توان همان امتداد و استمرار دانش کهن و همه جا گیر آمار دانست. تفاوت عمده در مقیاس، وسعت و گوناگونی زمینه‌ها و کاربردها، و نیز ابعاد و اندازه‌های داده‌های امروزین است که شیوه‌های ماشینی مربوط به یادگیری، مدل‌سازی، و آموزش را طلب می‌نماید.

در سال ۱۹۶۰ آماردانان اصطلاح “Data Fishing” یا “Data Dredging”به معنای “صید داده” را جهت کشف هر گونه ارتباط در حجم بسیار بزرگی از داده‌ها بدون در نظر گرفتن هیچگونه پیش فرضی بکار بردند. بعد از سی سال و با انباشته شدن داده‌ها در پایگاه داده اصطلاح داده کاوی در حدود سال ۱۹۹۰ رواج بیشتری یافت. اصطلاحات دیگری نظیر “Data Archaeology”یا “Information Harvesting” یا “Information Discovery” یا”Knowledge Extraction” نیز بکار رفته‌اند.

بسیاری از شرکت‌ها و موسسات دارای حجم انبوهی از اطلاعات هستند. تکنیک‌های داده‌کاوی به‌طور تاریخی به گونه‌ای گسترش یافته‌اند که به سادگی می‌توان آن‌ها را بر ابزارهای نرم‌افزاری و … امروزی تطبیق داده و از اطلاعات جمع‌آوری شده بهترین بهره را برد.

در صورتی که سیستم‌های داده‌کاوی بر روی سکوهای Client/Server قوی نصب شده باشد و دسترسی به بانک‌های اطلاعاتی بزرگ فراهم باشد، می‌توان به سوالاتی از قبیل :کدامیک از مشتریان ممکن است خریدار کدامیک از محصولات آینده شرکت باشند، چرا، در کدام مقطع زمانی و بسیاری از موارد مشابه پاسخ داد.

 

داده کاوی

داده کاوی

ویژگی‌ها

یکی از ویژگی‌های کلیدی در بسیاری از ابتکارات مربوط به تأمین امنیت ملی، داده کاوی است. داده کاوی که به عنوان ابزاری برای کشف جرایم، ارزیابی میزان ریسک و فروش محصولات به کار می‌رود، در بر گیرنده ابزارهای تجزیه و تحلیل اطلاعات به منظور کشف الگوهای معتبر و ناشناخته در بین انبوهی از داده هاست. داده کاوی غالباً در زمینه تأمین امنیت ملی به منزله ابزاری برای شناسایی فعالیت‌های افراد خرابکار شامل جابه جایی پول و ارتباطات بین آن‌ها و همچنین شناسایی و ردگیری خود آن‌ها با بررسی سوابق مربوط به مهاجرت و مسافرت هاست.

داده کاوی پیشرفت قابل ملاحظه‌ای را در نوع ابزارهای تحلیل موجود نشان می‌دهد اما محدودیت‌هایی نیز دارد. یکی از این محدودیت‌ها این است که با وجود اینکه به آشکارسازی الگوها و روابط کمک می‌کند اما اطلاعاتی را دربارهٔ ارزش یا میزان اهمیت آن‌ها به دست نمی‌دهد. دومین محدودیت آن این است که با وجود توانایی شناسایی روابط بین رفتارها یا متغیرها لزوماً قادر به کشف روابط علت و معلولی نیست. موفقیت داده کاوی در گرو بهره‌گیری از کارشناسان فنی و تحلیل گران کار آزموده‌ای است که از توانایی کافی برای طبقه‌بندی تحلیل‌ها و تغییر آن‌ها برخوردار هستند.

بهره‌برداری از داده کاوی در دو بخش دولتی و بخش خصوصی رو به گسترش است. صنایعی چون بانکداری، بیمه، بهداشت و بازاریابی آن را عموماً برای کاهش هزینه‌ها، ارتقاء کیفی پژوهش‌ها و بالاتر بردن میزان فروش به کار می‌برند. کاربرد اصلی داده کاوی در بخش دولتی به عنوان ابزاری برای تشخیص جرایم بوده‌است اما امروزه دامنه بهره‌برداری از آن گسترش روزافزونی یافته و سنجش و بهینه‌سازی برنامه‌ها را نیز در بر می‌گیرد. بررسی برخی از برنامه‌های کاربردی مربوط به داده کاوی که برای تأمین امنیت ملی به کار می‌روند، نشان دهنده رشد قابل ملاحظه‌ای در رابطه با کمیت و دامنه داده‌هایی است که باید تجزیه و تحلیل شوند.

داده کاوی

داده کاوی

توانایی‌های فنی در داده کاوی از اهمیت ویژه‌ای برخوردار اند اما عوامل دیگری نیز مانند چگونگی پیاده‌سازی و نظارت ممکن است نتیجه کار را تحت تأثیر قرار دهند. یکی از این عوامل کیفیت داده هاست که بر میزان دقت و کامل بودن آن دلالت دارد. عامل دوم میزان سازگاری نرم‌افزار داده کاوی با بانک‌های اطلاعاتی است که از سوی شرکت‌های متفاوتی عرضه می‌شوند. عامل سومی که باید به آن اشاره کرد به بیراهه رفتن داده کاوی و بهره‌برداری از داده‌ها به منظوری است که در ابتدا با این نیت گرد آوری نشده‌اند. حفظ حریم خصوصی افراد عامل دیگری است که باید به آن توجه داشت.

اصولاً به پرسش‌های زیر در زمینه داده کاوی باید پاسخ داده شود:

  • سازمان‌های دولتی تا چه حدی مجاز به بهره‌برداری از داده‌ها هستند؟
  • آیا از داده‌ها در چارچوبی غیر متعارف بهره‌برداری می‌شود؟
  • کدام قوانین حفظ حریم خصوصی ممکن است به داده کاوی مربوط شوند؟

کاوش در داده‌ها بخشی بزرگ از سامانه‌های هوشمند است. سامانه‌های هوشمند زیر شاخه‌ای بزرگ و پرکاربرد از زمینه علمی جدید و پهناور یادگیری ماشینی هستند که خود زمینه‌ای در هوش مصنوعی است. فرایند گروه گروه کردن مجموعه‌ای از اشیاء فیزیکی یا مجرد به صورت طبقه‌هایی از اشیاء مشابه هم را خوشه‌بندی می‌نامیم.

با توجه به اندازه‌های گوناگون (و در اغلب کاربردها بسیار بزرگ و پیچیده) مجموعه‌های داده‌ها مقیاس‌پذیری الگوریتم‌های به کار رفته معیاری مهم در مفاهیم مربوط به کاوش در داده‌ها است.

کاوش‌های ماشینی در متون حالتی خاص از زمینهٔ عمومی‌تر کاوش در داده‌ها بوده، و به آن دسته از کاوش‌ها اطلاق می‌شود که در آن‌ها داده‌های مورد مطالعه از جنس متون نوشته شده به زبان‌های طبیعی انسانی باشد.

چیستی

داده کاوی به بهره‌گیری از ابزارهای تجزیه و تحلیل داده‌ها به منظور کشف الگوها و روابط معتبری که تاکنون ناشناخته بوده‌اند اطلاق می‌شود. این ابزارها ممکن است مدل‌های آماری، الگوریتم‌های ریاضی و روش‌های یاد گیرنده (Machine Learning Methods) باشند که کار این خود را به صورت خودکار و بر اساس تجربه‌ای که از طریق شبکه‌های عصبی (Neural Networks) یا درخت‌های تصمیم‌گیری (Decision Trees) به دست می‌آورند بهبود می‌بخشد. داده کاوی منحصر به گردآوری و مدیریت داده‌ها نبوده و تجزیه و تحلیل اطلاعات و پیش‌بینی را نیز شامل می‌شود برنامه‌های کاربردی که با بررسی فایل‌های متن یا چند رسانه‌ای به کاوش داده‌ها می‌پردازند پارامترهای گوناگونی را در نظر می‌گیرد که عبارت اند از:

  • قواعد انجمنی (Association): الگوهایی که بر اساس آن یک رویداد به دیگری مربوط می‌شود مثلاً خرید قلم به خرید کاغذ.
  • ترتیب (Sequence): الگویی که به تجزیه و تحلیل توالی رویدادها پرداخته و مشخص می‌کند کدام رویداد، رویدادهای دیگری را در پی دارد مثلاً تولد یک نوزاد و خرید پوشک.
  • پیش‌بینی(Prediction): در پیش‌بینی هدف پیش‌بینی یک متغیر پیوسته می‌باشد. مانند پیش‌بینی نرخ ارز یا هزینه‌های درمانی.
  • رده‌بندی یا طبقه‌بندی (Classification): فرایندی برای پیدا کردن مدلی است که رده‌های موجود در داده‌ها را تعریف می‌نماید و متمایز می‌کند، با این هدف که بتوان از این مدل برای پیش‌بینی رده رکوردهایی که برچسب رده آن‌ها (متغیر هدف) ناشناخته می‌باشد، استفاده نمود. در حقیقت در رده‌بندی بر خلاف پیش‌بینی، هدف پیش‌بینی مقدار یک متغیر گسسته‌است. روش‌های مورد استفاده در پیش‌بینی و رده‌بندی عموماً یکسان هستند.
  • خوشه‌بندی (Clustering): گروه‌بندی مجموعه‌ای از اعضاء، رکوردها یا اشیاء به نحوی که اعضای موجود در یک خوشه بیشترین شباهت را به یکدیگر و کمترین شباهت را به اعضای خوشه‌های دیگر داشته باشند.
  • مصورسازی (visualization): مصورسازی داده‌ها یکی از قدرتمندترین و جذابترین روش‌های اکتشاف در داده‌ها می‌باشد

برنامه‌های کاربردی که در زمینه تجزیه و تحلیل اطلاعات به کار می‌روند از امکاناتی چون پرس و جوی ساخت یافته (Structured query) که در بسیاری از بانک‌های اطلاعاتی یافت می‌شود و از ابزارهای تجزیه و تحلیل آماری برخوردارند اما برنامه‌های مربوط به داده کاوی در عین برخورداری از این قابلیت‌ها از نظر نوع با آن‌ها تفاوت دارند. بسیاری از ابزارهای ساده برای تجزیه و تحلیل داده‌ها روشی بر پایه راستی آزمایی (verification) را به کار می‌برند که در آن فرضیه‌ای بسط داده شده آنگاه داده‌ها برای تأیید یا رد آن بررسی می‌شوند. به‌طور مثال ممکن است این نظریه مطرح شود که فردی که یک چکش خریده حتماً یک بسته میخ هم خواهد خرید. کارایی این روش به میزان خلاقیت کاربر برای ارائه فرضیه‌های متنوع و همچنین ساختار برنامه بکار رفته بستگی دارد. در مقابل در داده کاوی روش‌هایی برای کشف روابط بکار برده می‌شوند و به کمک الگوریتم‌هایی روابط چند بعدی بین داده‌ها تشخیص داده شده و آن‌هایی که یکتا (unique) یا رایج هستند شناسایی می‌شوند. به‌طور مثال در یک فروشگاه سخت‌افزار ممکن است بین خرید ابزار توسط مشتریان با تملک خانه شخصی یا نوع خودرو، سن، شغل، میزان درآمد یا فاصله محل اقامت آن‌ها با فروشگاه رابطه‌ای برقرار شود.

در نتیجه قابلیت‌های پیچیده‌اش برای موفقیت در تمرین داده کاوی دو مقدمه مهم است یکی فرمول واضحی از مشکل که قابل حل باشد و دیگری دسترسی به داده متناسب. بعضی از ناظران داده کاوی را مرحله‌ای در روند کشف دانش در پایگاه داده‌ها می‌دانند (KDD). مراحل دیگری در روند KDD به صورت تصاعدی شامل، پاکسازی داده، انتخاب داده انتقال داده، داده کاوی، الگوی ارزیابی، و عرضه دانش می‌باشد. بسیاری از پیشرفت‌ها در تکنولوژی و فرایندهای تجاری بر رشد علاقه‌مندی به داده کاوی در بخش‌های خصوصی و عمومی سهمی داشته‌اند. بعضی از این تغییرات شامل:

  • رشد شبکه‌های کامپیوتری که در ارتباط برقرار کردن پایگاه‌ها داده مورد استفاده قرار می‌گیرند.
  • توسعه افزایش تکنیکهایی بر پایه جستجو مثل شبکه‌های عصبی و الگوریتم‌های پیشرفته.
  • گسترش مدل محاسبه کلاینت سروری که به کاربران اجازه دسترسی به منابع داده‌های متمرکز شده را از روی دسک تاپ می‌دهد.
  • و افزایش توانایی به تلفیق داده از منابع غیر متجانس به یک منبع قابل جستجو می‌باشد.

علاوه بر پیشرفت ابزارهای مدیریت داده، افزایش قابلیت دسترسی به داده و کاهش نرخ نگهداری داده نقش ایفا می‌کند. در طول چند سال گذشته افزایش سریع جمع‌آوری و نگهداری حجم اطلاعات وجود داشته‌است. با پیشنهادهای برخی از ناظران مبنی بر آنکه کمیت داده‌های دنیا به‌طور تخمینی هر ساله دوبرابر می‌گردد. در همین زمان هزینه ذخیره‌سازی داده‌ها به‌طور قابل توجهی از دلار برای هر مگابایت به پنی برای مگابایت کاهش پیدا کرده‌است. مطابقاً قدرت محاسبه‌ها در هر ۱۸ – ۲۴ ماه به دوبرابر ارتقاء پیدا کرده‌است این در حالی است که هزینه قدرت محاسبه رو به کاهش است. داده کاوی به‌طور معمول در دو حوزه خصوصی و عمومی افزایش پیدا کرده‌است. سازمان‌ها داده کاوی را به عنوان ابزاری برای بازدید اطلاعات مشتریان کاهش تقلب و اتلاف و کمک به تحقیقات پزشکی استفاده می‌کنند. با اینهمه ازدیاد داده کاوی به طبع بعضی از پیاده‌سازی و پیامد اشتباه را هم دارد. این‌ها شامل نگرانی‌هایی در مورد کیفیت داده‌ای که تحلیل می‌گردد، توانایی کار گروهی پایگاه‌های داده و نرم‌افزارها بین ارگان‌ها و تخطی‌های بالقوه به حریم شخصی می‌باشد. همچنین ملاحظاتی در مورد محدودیت‌هایی در داده کاوی در ارگان‌ها که کارشان تأثیر بر امنیت دارد، نادیده گرفته می‌شود.

 

مفهوم مدیریت ذخیره سازی و دستیابی اطلاعات

داده‌های اطلاعاتی به عنوان یکی از منابع حیاتی سازمان شناخته می‌شود و بسیاری از سازمان‌ها با اطلاعات و دانش سازمانی خود مانند سایر دارایی‌های ارزشمندشان برخورد می‌کنند .

نکته: داده اطلاعاتی به اطلاعات خام سازمان اطلاق می‌شود و اطلاعات به داده‌های پردازش شده. همچنین داده‌های پردازش شده پس از طبقه‌بندی و آنالیز به دانش سازمان تبدیل می‌گردند.

حال تصور نمایید، دسترسی به اطلاعات در شرایطی که داده‌ها به روش نامناسبی نگهداری شوند و یا روش ضابطه مندی جهت دستیابی به آن‌ها وجود نداشته باشد تا چه حد مشکل است . برای رسیدن به یک سیستم اطلاعاتی مناسب، داده‌ها می‌بایست به صورتی منطقی طبقه‌بندی و ذخیره شوند تا استفاده از آن‌ها ساده‌تر بوده، با کارایی بیشتری تحلیل شوند و سریعتر مورد استفاده قرار گیرند و در نتیجه مدیریت بهتری بر آن‌ها اعمال شود.

ساختار بانک اطلاعاتی سازمان

داده‌های سازمان‌ها در انواع بانک‌های اطلاعاتی و با ساختارهای متنوعی ذخیره می‌گردند . طراحی و سازماندهی این ساختارها، بکارگیری و انتقال به بانک‌های اطلاعاتی پیشرفته و بهینه سازی آن‌ها یکی خدماتی است که توسط واحدهای فناوری اطلاعات ارائه می‌شود .

محدودیت‌های داده‌کاوی

در حالیکه محصولات داده کاوی ابزارهای قدرتمندی می‌باشند، اما در نوع کاربردی کافی نیستند. برای کسب موفقیت، داده کاوی نیازمند تحلیل گران حرفه‌ای و متخصصان ماهری می‌باشد که بتوانند ترکیب خروجی به وجود آمده را تحلیل و تفسیر نمایند. در نتیجه محدودیت‌های داده کاوی مربوط به داده اولیه یا افراد است تا اینکه مربوط به تکنولوژی باشد.

اگرچه {داده کاوی} به الگوهای مشخص و روابط آن‌ها کمک می‌کند، اما برای کاربر اهمیت و ارزش این الگوها را بیان نمی‌کند. تصمیماتی از این قبیل بر عهده خود کاربر است. برای نمونه در ارزیابی صحت داده کاوی، برنامه کاربردی در تشخیص مظنونان تروریست طراحی شده که ممکن است این مدل به کمک اطلاعات موجود در مورد تروریستهای شناخته شده، آزمایش شود. با اینهمه در حالیکه ممکن است اطلاعات شخص به‌طور معین دوباره تصدیق گردد، که این مورد به این منظور نیست که برنامه مظنونی را که رفتارش به‌طور خاص از مدل اصلی منحرف شده را تشخیص بدهد.

تشخیص رابطه بین رفتارها یا متغیرها یکی دیگر از محدودیت‌های داده کاوی می‌باشد که لزوماً روابط اتفاقی را تشخیص نمی‌دهد. برای مثال برنامه‌های کاربردی ممکن است الگوهای رفتاری را مشخص کند، مثل تمایل به خرید بلیط هواپیما درست قبل از حرکت که این موضوع به مشخصات درآمد، سطح تحصیلی و استفاده از اینترنت بستگی دارد. در حقیقت رفتارهای شخصی شامل شغل (نیاز به سفر در زمانی محدود) وضع خانوادگی (نیاز به مراقبت پزشکی برای مریض) یا تفریح (سود بردن از تخفیف دقایق پایانی برای دیدن مکان‌های جدید) ممکن است بر روی متغیرهای اضافه تأثیر بگذارد.

کاربردهای داده‌کاوی در علوم رایانه

در علم رایانه از داده‌کاوی برای کشف الگوی میان داده‌ها استفاده می‌شود، معمولاً داده‌های خام و معمولاً بی‌معنا وارد سیستم شده و پس از پردازش‌های مورد نیاز نتایج حاصل از داده که آن‌ها را اطلاعات می‌نامند، استخراج می‌گردد کاربردهای عمومی داده‌کاوی در علم کامپیوتر عبارتند از:

  • کشف الگوی میان داده‌ها
  • پیش‌بینی حدودی نتایج
  • به‌دست آوردن اطلاعات کاربردی
  • تمرکز بر روی داده‌های بزرگ

کاربردهای داده‌کاوی در رشته مهندسی صنایع

در مهندسی صنایع از داده‌کاوی در حوزه‌های مدیریت ارتباط با مشتری ، نگهداری و تعمیرات پیشگیرانه ، مدیریت زنجیره تأمین ، برنامه‌ریزی تولید ، کنترل کیفیت ، مدیریت پروژه ، ایمنی، بهداشت و محیط زیست  استفاده می‌شود. زبان رایج در استفاده از دیتا ماینینگ و تحلیل داده‌ها نرم افزار می‌باشد، اما به تازگی نرم افزار Rapidminer نیز با توجه به امکانات زیادش مورد توجه قرار گرفته‌است.

کاربردهای داده کاوی در کتابخانه ها

 

داده کاوی در ابتدا از حوزه تجارت برخاست اما کاربردهای آن در سایر حوزه هائی که به گردآوری حجم وسیعی از داده هائی می پردازند که دستخوش تغییرات پویا نیز می‌گردند؛ مفید شناخته شد. بخش‌هایی مثل بانکداری، تجارت الکترونیک، تجارت سهام، بیمارستان و هتل از این نمونه‌اند.

انتظار میرود که استفاده از داده کاوی در بخش آموزش به‌طور عام امکان‌های جدید بسیاری ارائه دهد. برخی کاربردهای داده کاوی در کتابخانه‌ها و قسمت اداری آموزش در ذیل مورد بحث قرار گرفته‌اند.

عملیات کتابداری به‌طور کلی شامل مدیریت مدارک، ارائه خدمات و امور اداره و نگهداری است. هر کدام از این کارکردها با انواع مختلفی از داده‌ها سروکار دارد و به‌طور جداگانه پردازش می‌شود. اگرچه، انجام تحلیل ترکیبی بر این مجموعه‌های داده  نیز می‌تواند افق تازه ای را بگشاید که به طرح خدمات جدید و تحول رویه‌ها و عملیات جاری کمک نماید. جدول یک برخی از کاربردهای ممکن داده کاوی را که می‌تواند در کتابداری مفید باشد ارائه می‌کند.

ابزارهای داده‌کاوی

معروف‌ترین ابزارهای داده‌کاوی برای انجام پروژه‌های داده کاوی به ترتیب پرطرفدار بودن

  1. آر (زبان برنامه‌نویسی)
  2. پایتون (زبان برنامه‌نویسی)
  3. رپیدماینر
  4. Clementine که نسخه ۱۳ ان با نام SPSS Modeler نامیده می‌شود.
  5. نرم‌افزار وکا
  6. متلب

نرم‌افزار

برنامه‌های کاربردی و نرم‌افزارهای داده کاوی متن-باز رایگان

  • Carrot2: پلتفرمی برای خوشه بندی متن و نتایج جستجو
  • Chemicalize.org: یک کاوشگر ساختمان شیمیایی و موتور جستجوی وب
  • ELKI: یک پروژه تحقیقاتی دانشگاهی با تحلیل خوشه‌ای پیشرفته و روش‌های تشخیص داده‌های خارج از محدوده که به زبان جاوا نوشته شده‌است.
  • GATE: یک پردازشگر زبان بومی و ابزار مهندسی زبان.

برنامه‌های کاربردی و نرم‌افزارهای داده کاوی تجاری

  • Angoss KnowledgeSTUDIO: ابزار داده کاوی تولید شده توسط Angoss.
  • BIRT Analytics: ابزار داده کاوی بصری و تحلیل پیش‌بینی گر تولید شده توسط Actuate Corporation.
  • Clarabridge: راه حل تحلیلگر کلاس متن.
  • (E-NI(e-mining, e-monitor: ابزار داده کاوی مبتنی بر الگوهای موقتی.
  • IBM SPSS Modeler: نرم‌افزار داده کاوی تولید شده توسط IBM
  • Microsoft Analysis Services: نرم‌افزار داده کاوی تولید شده توسط مایکروسافت
  • Oracle Data Mining: نرم‌افزار داده کاوی تولید شده توسط شرکت اوراکل
  • نرم افزار وکا

بررسی اجمالی بازار نرم‌افزارهای داده کاوی

تا کنون چندین محقق و سازمان بررسی‌هایی را بر روی ابزارهای داده کاوی و راهنماییهایی برای داده کاوها تهیه دیده‌اند. این بررسی‌ها بعضی از نقاط ضعف و قوت بسته‌های نرم‌افزاری را مشخص می‌کنند. همچنین خلاصه‌ای را از رفتارها، اولویت‌ها و دیدهای داده کاوها تهیه کرده‌اند. بعضی از این گزارش‌ها را در زیر می‌توانید مشاهده نمایید:

  • گزارش: 2011 Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
  • Annual Rexer Analytics Data Miner Surveys تاریخ(2007–2011)

داده کاوی از جمله علم های روزی است که کاربردهای فرآوانی دارد که به بخشی از این کاربرها برای شما عزیزان پرداختیم

با سری مقالات داده کاوی گروه همت همراه باشید


مقاله به نقل از { ویکی پدیا }